This is a Clilstore unit. You can .
An electrical circuit is a combination of two or more electrical components which are interconnected by conducting paths. The components may be active or inactive or both.
There are two types of electricity - direct current and alternating current, i.e, DC and AC. The circuit that deals with direct current or DC, is referred as DC circuit and the circuit that deals with alternating current or AC, is generally referred as AC Circuit. The components of the electrical DC circuit are mainly resistive, where as components of the AC circuit may be reactive as well as resistive. Any electrical circuit can be categorized into three different groups - series, parallel and series parallel. So for example, in the case of DC, the circuits can also be divided into three groups, such as series DC circuit, parallel DC circuit and series and parallel circuit.
When all the resistive components of a DC circuit are connected end to end to form a single path for flowing current, then the circuit is referred as series DC circuit. The manner of connecting components end to end is known as series connection. Suppose we have n number of resistors R1, R2, R3............Rn and they are connected in end to end manner, means they are series connected. If this series combination is connected across a voltage source, the current starts flowing through that single path. As the resistors are connected in end to end manner, the current first enters in to R1, then this same current comes in R2, then R3 and at last it reaches Rn from which the current enters into the negative terminals of the voltage source. In this way, the same current circulates through every resistor connected in series. Hence, it can be concluded that in a series DC circuit, the same current flows through all parts of the electrical circuit.
Again according to Ohm’s law, the voltage drop across a resistor is the product of its electrical resistance and the current flow through it. Here, current through every resistor is the same, hence the voltage drop across each resistor's proportional to its electrical resistance value. If the resistances of the resistors are not equal then the voltage drop across them would also not be equal. Thus, every resistor has its individual voltage drop in a series DC circuit.
The flow of current is shown here by a moving point. This is just a conceptual representation.
When two or more electrical components are connected in a way that one end of each component is connected to a common point and the other end is connected to another common point, then the electrical components are said to be connected in parallel, and such an electrical DC circuit is referred as a parallel DC circuit. In this circuit every component will have the same voltage drop across them, and it will be exactly equal to the voltage which occurs between the two common points where the components are connected. Also in a parallel DC circuit, the current has several parallel paths through these parallel connected components, so the circuit current will be divided into as many paths as the number of components.
Here, in this electrical circuit, the voltage drop across each component is equal. Again as per Ohm’s law, voltage drop across any resistive component is equal to the product of its electrical resistance and current through it. As the voltage drop across every component connected in parallel is the same, the current through them is inversely proportional to its resistance value.
The flow of current is shown here by a moving point. This is just a conceptual representation.
So far we have discussed series DC circuit and parallel DC circuit separately, but in practice, the electrical circuit is generally a combination of both series circuits and parallel circuits. Such combined series and parallel circuits can be solved by proper application of Ohm’s law and the rules for series and parallel circuits to the various parts of the complex circuit.
Short url: https://clilstore.eu/cs/5402